The Baer Product and Extensions of Hopf Orders

Robert G. Underwood
Department of Mathematics
Department of Computer Science
Auburn University at Montgomery
Montgomery, Alabama

June 4, 2024

Contents

1. Introduction
2. The Baer Product, I
3. The Baer Product, II
4. Application to Hopf Orders: $\mathcal{E}_{\mathrm{gt}}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$
5. Application to Hopf Orders: a Result of Tossici
6. Hopf Orders in $K\left[C_{p^{2}} \times C_{p}\right], K\left[C_{p} \times C_{p^{2}}\right], K\left[C_{p^{3}}\right]$

1. Introduction

Let p be prime and let K be a field of characteristic p that is complete with respect to a discrete valuation $\nu: K \rightarrow \mathbb{Z} \cup\{\infty\}$. Let R denote the valuation ring with unique maximal ideal $\mathfrak{m}=(\pi), \nu(\pi)=1$.

Let C_{p}^{n} denote the elementary abelian group of order p^{n} and let $C_{p^{n}}$ denote the cyclic group of order p^{n} for $n=1,2,3$.

For $i_{1}, i_{2} \geq 0$ integers, $C_{p}=\left\langle g_{1}\right\rangle$, let

$$
E\left(i_{1}\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}\right] \text { and } E\left(i_{2}\right)=R\left[\frac{g_{1}-1}{\pi^{i_{2}}}\right]
$$

be Hopf orders in $K\left[C_{p}\right]$.

Let $\mathcal{E}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ denote the set of equivalence classes of short exact sequences of Hopf orders

$$
\begin{equation*}
R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} H \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R . \tag{1}
\end{equation*}
$$

We can endow $\mathcal{E}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ with the Baer product $*$, so that $\mathcal{E}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ is a group.

There is a subgroup $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ of $\mathcal{E}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$, consisting of the generically trivial extensions, i.e., those extensions of the form (1) which after tensoring with K, appear as

$$
\begin{equation*}
K \longrightarrow K\left[C_{p}\right] \xrightarrow{j} K\left[C_{p} \times C_{p}\right] \xrightarrow{s} K\left[C_{p}\right] \longrightarrow K . \tag{2}
\end{equation*}
$$

G. G. Elder and U (2017) have classified the subgroup $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$.

Elements of $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ appear as

$$
E_{\mu}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} E\left(i_{1}, i_{2}, \mu\right) \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

where the middle term is a truncated exponential Hopf order in $K\left[C_{p} \times C_{p}\right]$ of the form

$$
E\left(i_{1}, i_{2}, \mu\right)=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] .
$$

Here μ is an element of K that satisfies the valuation condition $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$, and $g_{1}^{p}=g_{2}^{p}=1$.

Passing to the cyclic case, let D denote an arbitrary R-Hopf order in $K\left[C_{p^{2}}\right], C_{p^{2}}=\left\langle g_{2}\right\rangle, g_{2}^{p}=g_{1}$.

From the short exact sequence of groups

$$
\begin{equation*}
\{1\} \longrightarrow\left\langle g_{2}^{p}\right\rangle \xrightarrow{j} C_{p^{2}} \xrightarrow{s}\left\langle\bar{g}_{2}\right\rangle \longrightarrow\{1\}, \tag{3}
\end{equation*}
$$

we obtain a short exact sequence of K-Hopf algebras,

$$
\begin{equation*}
K \longrightarrow K\left[C_{p}\right] \xrightarrow{j} K\left[C_{p^{2}}\right] \xrightarrow{s} K\left[C_{p}\right] \longrightarrow K . \tag{4}
\end{equation*}
$$

Since is an D is R-Hopf order in $K\left[C_{p^{2}}\right]$, from (4) we obtain a short exact sequence of R-Hopf orders

$$
E: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} D \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

where

$$
E\left(i_{1}\right)=R\left[\frac{g_{2}^{p}-1}{\pi^{i_{1}}}\right] \text { and } E\left(i_{2}\right)=R\left[\frac{\bar{g}_{2}-1}{\pi^{i_{2}}}\right]
$$

are R-Hopf orders in $K\left[C_{p}\right]$.

Because $\operatorname{char}(K)=p$, we must have $p i_{2} \leq i_{1}$.
Consequently, there is a distinguished extension

$$
E_{0}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R
$$

whose middle term is an R-Hopf order in $K\left[C_{p^{2}}\right]$ (a Larson order).
In the group $\left\langle\mathcal{E}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right), *\right\rangle$, the inverse of E_{0} is

$$
E_{0}^{-1}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}^{p-1}-1}{\pi^{i_{1}}}, \frac{g_{2}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

with $g_{2}^{p}=g_{1}^{p-1}$.

Thus, under the Baer product,

$$
[E] *\left[E_{0}^{-1}\right]
$$

is a generically trivial extension in $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ and is thus of the form $\left[E_{\mu}\right]$ for some $\mu \in K$.

And so,

$$
[E]=\left[E_{\mu}\right] *\left[E_{0}\right]
$$

In this manner, we can classify E; the middle term of E is

$$
D=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right], g_{2}^{p}=g_{1}, g_{1}^{p}=1
$$

which is an R-Hopf order in $K\left[C_{p^{2}}\right]$.
So, in this way we obtain a complete classification of R-Hopf orders in $K\left[C_{p^{2}}\right]$.
(And thus, recover a result of D. Tossici (2010).)

2. The Baer Product, I

The following discussion of the Baer product was outlined in [Ch...21, Section 12.6.1].

Let H, H^{\prime} be commutative, cocommutative R-Hopf algebras and let $\mathcal{E}\left(H^{\prime}, H\right)$ denote the set of equivalence classes of short exact sequences of R-Hopf algebras; $\mathcal{E}\left(H^{\prime}, H\right)$ contains the extensions of H by H^{\prime}.

On $\mathcal{E}\left(H^{\prime}, H\right)$ we define a multiplication as follows. Let

$$
\begin{aligned}
& E_{1}: R \rightarrow H \xrightarrow{j_{1}} H_{1} \xrightarrow{s_{1}} H^{\prime} \rightarrow R, \\
& E_{2}: R \rightarrow H \xrightarrow{j_{2}} H_{2} \xrightarrow{s_{2}} H^{\prime} \rightarrow R,
\end{aligned}
$$

be short exact sequences of R-Hopf algebras.

Since the tensor product of two Hopf algebras is again a Hopf algebra, we obtain a short exact sequence of R-Hopf algebras,

$$
R \rightarrow H \otimes_{R} H^{j_{1} \otimes j_{2}} H_{1} \otimes_{R} H_{2} \xrightarrow{s_{1} \otimes s_{2}} H^{\prime} \otimes_{R} H^{\prime} \rightarrow R,
$$

$\left(j_{1} \otimes j_{2}\right)(a \otimes b)=j_{1}(a) \otimes j_{2}(b),\left(s_{1} \otimes s_{2}\right)(x \otimes y)=s_{1}(x) \otimes s_{2}(y)$,
Let the pair of morphisms $\alpha: A \rightarrow H_{1} \otimes_{R} H_{2}, \beta: A \rightarrow H^{\prime}$ be the pull-back of $\left(s_{1} \otimes s_{2}, \Delta_{H^{\prime}}\right)$, that is,
$A=\left\{\left(\sum_{i} x_{i} \otimes y_{i}\right) \otimes z \in H_{1} \otimes H_{2} \otimes H^{\prime} \mid\left(s_{1} \otimes s_{2}\right)\left(\sum_{i} x_{i} \otimes y_{i}\right)=\Delta_{H^{\prime}}(z)\right\}$,
$\alpha\left(\left(\sum_{i} x_{i} \otimes y_{i}\right) \otimes z\right)=\sum_{i} x_{i} \otimes y_{i}$ and $\beta\left(\left(\sum_{i} x_{i} \otimes y_{i}\right) \otimes z\right)=z$.

Then there is a commutative diagram with exact rows:

In fact, A is an R-Hopf algebra. As evidence...

Proposition 1.

Let $m_{H_{1} \otimes H_{2} \otimes H^{\prime}}$ denote multiplication in $H_{1} \otimes H_{2} \otimes H^{\prime}$ and let $\Delta_{H_{1} \otimes H_{2} \otimes H^{\prime}}$ denote comultiplication in $H_{1} \otimes H_{2} \otimes H^{\prime}$. Then
(i) $m_{H_{1} \otimes H_{2} \otimes H^{\prime}}(A \otimes A) \subseteq A$,
(ii) $\Delta_{H_{1} \otimes H_{2} \otimes H^{\prime}}(A) \subseteq A \otimes A$.

Proof
For (i): Let $\left(\sum_{k} a_{k} \otimes b_{k}\right) \otimes c,\left(\sum_{i} x_{i} \otimes y_{i}\right) \otimes z$ be elements of A.
Then $\left(s_{1} \otimes s_{2}\right)\left(\sum_{k} a_{k} \otimes b_{k}\right)=\Delta_{H^{\prime}}(c)$ and $\left(s_{1} \otimes s_{2}\right)\left(\sum_{i} x_{i} \otimes y_{i}\right)=\Delta_{H^{\prime}}(z)$. Thus

$$
\left(s_{1} \otimes s_{2}\right)\left(\sum_{k} \sum_{i} a_{k} x_{i} \otimes b_{k} y_{i}\right)=\Delta_{H^{\prime}}(c z)
$$

For (ii): From $\left(s_{1} \otimes s_{2}\right)\left(\sum_{i} x_{i} \otimes y_{i}\right)=\Delta_{H^{\prime}}(z)$, we obtain

$$
\Delta_{H^{\prime} \otimes H^{\prime}}\left(s_{1} \otimes s_{2}\right)\left(\sum_{i} x_{i} \otimes y_{i}\right)=\Delta_{H^{\prime} \otimes H^{\prime}} \Delta_{H^{\prime}}(z)
$$

Now, the LHS is equal to

$$
\begin{aligned}
& \left(\left(s_{1} \otimes s_{2}\right) \otimes\left(s_{1} \otimes s_{2}\right)\right) \Delta_{H_{1} \otimes H_{2}}\left(\sum_{i} x_{i} \otimes y_{i}\right) \\
& =\left(\left(s_{1} \otimes s_{2}\right) \otimes\left(s_{1} \otimes s_{2}\right)\right) \sum_{i} \sum_{\left(x_{i}\right),\left(y_{i}\right)} x_{i(1)} \otimes y_{i(1)} \otimes x_{i(2)} \otimes y_{i(2)} \\
& =\sum_{i} \sum_{\left(x_{i}\right),\left(y_{i}\right)}\left(s_{1} \otimes s_{2}\right)\left(x_{i(1)} \otimes y_{i(1)}\right) \otimes\left(s_{1} \otimes s_{2}\right)\left(x_{i(2)} \otimes y_{i(2)}\right)
\end{aligned}
$$

And the RHS is equal to

$$
\begin{aligned}
& \left(I_{H^{\prime}} \otimes \tau \otimes I_{H^{\prime}}\right)\left(\Delta_{H^{\prime}} \otimes \Delta_{H^{\prime}}\right) \Delta_{H^{\prime}}(z) \\
& =\left(I_{H^{\prime}} \otimes \tau \otimes I_{H^{\prime}}\right) \sum_{(z)} \Delta_{H^{\prime}\left(z_{(1)}\right)} \otimes \Delta_{H^{\prime}\left(z_{(2)}\right)} \\
& =\left(I_{H^{\prime}} \otimes \tau \otimes I_{H^{\prime}}\right) \sum_{(z),\left(z_{(1)}\right),\left(z_{(2)}\right)} z_{(1)_{(1)}} \otimes z_{(1)_{(2)}} \otimes z_{(2)(1)} \otimes z_{(2)(2)} \\
& =\sum_{(z),\left(z_{(1)}\right),\left(z_{(2)}\right)} z_{(1)_{(1)}} \otimes z_{(2){ }_{(1)}} \otimes z_{(1)(2)} \otimes z_{(2)(2)} \\
& =\sum_{(z),\left(z_{(1)}\right),\left(z_{(2)}\right)} z_{(1)_{(1)}} \otimes z_{(1)(2)} \otimes z_{(2)(1)} \otimes z_{(2)(2)}
\end{aligned}
$$

The last equality holds since H is cocommutative.

Thus

$$
\begin{aligned}
& \sum_{i} \sum_{\left(x_{i}\right),\left(y_{i}\right)}\left(s_{1} \otimes s_{2}\right)\left(x_{i(1)} \otimes y_{i(1)}\right) \otimes\left(s_{1} \otimes s_{2}\right)\left(x_{i(2)} \otimes y_{i(2)}\right) \\
& \quad=\sum_{(z),\left(z_{(1)}\right),\left(z_{(2)}\right)} z_{(1)_{(1)}} \otimes z_{(1)(2)} \otimes z_{(2)_{(1)}} \otimes z_{(2)_{(2)}} \\
& \quad=\sum_{(z)} \Delta_{H^{\prime}}\left(z_{(1)}\right) \otimes \Delta_{H^{\prime}\left(z_{(2)}\right)}
\end{aligned}
$$

Hence,

$$
\left(\sum_{i} x_{i(1)} \otimes y_{i(1)}\right) \otimes z_{(1)} \in A
$$

and

$$
\left(\sum_{i} x_{i(2)} \otimes y_{i(2)}\right) \otimes z_{(2)} \in A .
$$

To finish the proof of (ii), let $\Theta=\left(I_{H_{1} \otimes H_{2}} \otimes \tau \otimes I_{H^{\prime}}\right)$. Then

$$
\begin{aligned}
& \Delta_{H_{1} \otimes H_{2} \otimes H^{\prime}}\left(\left(\sum_{i} x_{i} \otimes y_{i}\right) \otimes z\right) \\
& =\Theta\left(\Delta_{H_{1} \otimes H_{2}} \otimes \Delta_{H^{\prime}}\right)\left(\left(\sum_{i} x_{i} \otimes y_{i}\right) \otimes z\right) \\
& =\Theta \sum_{i} \sum_{\left(x_{i}\right),\left(y_{i}\right),(z)} x_{i(1)} \otimes y_{i(1)} \otimes\left(x_{i(2)} \otimes y_{i(2)}\right) \otimes z_{(1)} \otimes z_{(2)} \\
& =\sum_{i} \sum_{\left(x_{i}\right),\left(y_{i}\right),(z)}\left(x_{i(1)} \otimes y_{i(1)} \otimes z_{(1)}\right) \otimes\left(x_{i(2)} \otimes y_{i(2)} \otimes z_{(2)}\right) \\
& \in A \otimes A
\end{aligned}
$$

as required.

3. The Baer Product, II

Let

$$
R \rightarrow H \otimes_{R} H \xrightarrow{j} A \xrightarrow{\beta} H^{\prime} \rightarrow R
$$

be the short exact sequence as constructed in Part I.
Let $m: H \otimes_{R} H \rightarrow H$ denote multiplication in H and let the pair of morphisms $\varrho: H \rightarrow B, i: A \rightarrow B$ be the push-out of (m, j), that is,

$$
B=(H \otimes A) / S
$$

with

$$
\begin{aligned}
& S=\{m(x \otimes y) \otimes 1-1 \otimes j(x \otimes y) \in H \otimes A \mid x \otimes y \in H \otimes H\} \\
& \varrho(h)=(h \otimes 1)+S \text { and } i(a)=(1 \otimes a)+S
\end{aligned}
$$

There is a commutative diagram with exact rows:

The bottom row E is a short exact sequence of Hopf algebras.
Let $[E]$ be the equivalence class of E, which is an element of $\mathcal{E}\left(H^{\prime}, H\right)$. Let $\left[E_{1}\right],\left[E_{2}\right]$ be the classes of E_{1}, E_{2}, respectively.

Then [E] is the Baer product $*$ of classes of extensions;

$$
[E]=\left[E_{1}\right] *\left[E_{2}\right]
$$

We know that $H \otimes A$ is an R-Hopf algebra. In order for the quotient

$$
B=(H \otimes A) / S
$$

to be a Hopf algebra, S should be a Hopf ideal, that is, S is a biideal (ideal + coideal) that satisfies $\sigma_{H \otimes A}(S) \subseteq S$.

We prove the coideal property under the very special conditions that $H=E\left(i_{1}\right), H^{\prime}=E\left(i_{2}\right)$ are R-Hopf orders in $K\left[C_{p}\right]$, and $H_{1}=E\left(i_{1}, i_{2}, \mu\right)$ and $H_{2}=E\left(i_{1}, i_{2}, \gamma\right)$ are R-Hopf orders in $K\left[C_{p^{2}}\right]$, with $\left\langle g_{2}\right\rangle=C_{p^{2}}, g_{2}^{p}=g_{1}$.

In this case,

$$
\begin{gathered}
A \subseteq E\left(i_{1}, i_{2}, \mu\right) \otimes E\left(i_{1}, i_{2}, \gamma\right) \otimes E\left(i_{2}\right) \\
H \otimes A=E\left(i_{1}\right) \otimes A
\end{gathered}
$$

Proposition 2.
S is a coideal of $E\left(i_{1}\right) \otimes A$, that is, $\varepsilon_{E\left(i_{1}\right) \otimes A}(S)=0$ and

$$
\Delta_{E\left(i_{1}\right) \otimes A}(S) \subseteq S \otimes\left(E\left(i_{1}\right) \otimes A\right)+\left(E\left(i_{1}\right) \otimes A\right) \otimes S
$$

Proof. Let

$$
h=g_{1}^{2} \otimes 1 \otimes 1 \otimes 1-1 \otimes g_{1} \otimes g_{1} \otimes 1
$$

Then h is an element of $S \subseteq E\left(i_{1}\right) \otimes A$. We have $\varepsilon_{E\left(i_{1}\right) \otimes A}(h)=0$. So it remains to show that

$$
\Delta_{E\left(i_{1}\right) \otimes A}(h) \in S \otimes\left(E\left(i_{1}\right) \otimes A\right)+\left(E\left(i_{1}\right) \otimes A\right) \otimes S
$$

We have

$$
\Delta_{E\left(i_{1}\right) \otimes A}\left(g_{1}^{2} \otimes 1 \otimes 1 \otimes 1\right)
$$

$$
\begin{aligned}
& =\left(I_{E\left(i_{1}\right)} \otimes \tau \otimes I_{A}\right)\left(\Delta_{E\left(i_{1}\right)} \otimes \Delta_{A}\right)\left(g_{1}^{2} \otimes 1 \otimes 1 \otimes 1\right) \\
& =\left(I_{E\left(i_{1}\right)} \otimes \tau \otimes I_{A}\right)\left(g_{1}^{2} \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1\right) \\
& =g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 .
\end{aligned}
$$

On the other hand,

$$
\Delta_{E\left(i_{1}\right) \otimes A}\left(1 \otimes g_{1} \otimes g_{1} \otimes 1\right)
$$

$$
\begin{aligned}
& =\left(I_{E\left(i_{1}\right)} \otimes \tau \otimes I_{A}\right)\left(\Delta_{E\left(i_{1}\right)} \otimes \Delta_{A}\right)\left(1 \otimes g_{1} \otimes g_{1} \otimes 1\right) \\
& =\left(I_{E\left(i_{1}\right)} \otimes \tau \otimes I_{A}\right)\left(1 \otimes 1 \otimes \Delta_{A}\left(g_{1} \otimes g_{1} \otimes 1\right)\right) \\
& =\left(I_{E\left(i_{1}\right)} \otimes \tau \otimes I_{A}\right)\left(1 \otimes 1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes g_{1} \otimes g_{1} \otimes 1\right) \\
& =1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes 1 \otimes g_{1} \otimes g_{1} \otimes 1 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
\Delta_{E\left(i_{1}\right) \otimes A}(h)=g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \\
\quad-1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes 1 \otimes g_{1} \otimes g_{1} \otimes 1
\end{gathered}
$$

Now,

$$
\begin{aligned}
& \left(g_{1}^{2} \otimes 1 \otimes 1 \otimes 1\right) \otimes\left(g_{1}^{2} \otimes 1 \otimes 1 \otimes 1\right)-\left(1 \otimes g_{1} \otimes g_{1} \otimes 1\right) \otimes\left(1 \otimes g_{1} \otimes g_{1} \otimes 1\right) \\
& =g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1-1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \\
& +1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1-1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes 1 \otimes g_{1} \otimes g_{1} \otimes 1 \\
& =\left(g_{1}^{2} \otimes 1 \otimes 1 \otimes 1-1 \otimes g_{1} \otimes g_{1} \otimes 1\right) \otimes g_{1}^{2} \otimes 1 \otimes 1 \otimes 1 \\
& \quad+1 \otimes g_{1} \otimes g_{1} \otimes 1 \otimes\left(g_{1}^{2} \otimes 1 \otimes 1 \otimes 1-1 \otimes g_{1} \otimes g_{1} \otimes 1\right)
\end{aligned}
$$

which is in

$$
S \otimes\left(E\left(i_{1}\right) \otimes A\right)+\left(E\left(i_{1}\right) \otimes A\right) \otimes S
$$

4. Application to Hopf orders: $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$

As shown in Elder and U (2017), all of the elements in $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ have been classified.

For $x \in K$, let $\wp(x)=x^{p}-x$.

Proposition 3 (Elder, U).

The subgroup $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ is isomorphic to the additive subgroup of $K /\left(\mathbb{F}_{p}+\mathfrak{m}^{i_{2}-i_{1}}\right)$ represented by those elements $\mu \in K$ satisfying $\nu(\wp(\mu)) \geq i_{2}-p i_{1}$.

In more detail: an element in $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ can be written as

$$
E_{\mu}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

for some $\mu \in K$ with $\nu\left(\wp(\mu) \geq i_{2}-p i_{1}\right.$. Note: $g_{1}^{p}=g_{2}^{p}=1$.
So we let E_{μ}, E_{γ} be two elements of $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$ and compute the Baer product $\left[E_{\mu}\right] *\left[E_{\gamma}\right]$.

In this case, $H=E\left(i_{1}\right)$,

$$
\begin{aligned}
& H_{1}=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right], \\
& H_{2}=R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\gamma]}-1}{\pi^{i_{2}}}\right],
\end{aligned}
$$

$H^{\prime}=E\left(i_{2}\right)$, and

$$
A \subseteq R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] \otimes R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\gamma]}-1}{\pi^{i_{2}}}\right] \otimes E\left(i_{2}\right)
$$

Now as $g_{1}^{[\mu]}, g_{1}^{[\gamma]} \in E\left(i_{1}\right)$ and $s_{1}\left(g_{1}^{[\mu]}\right)=s_{2}\left(g_{1}^{[\gamma]}\right)=1$, we have

$$
g_{1}^{[\mu]} \otimes g_{1}^{[\gamma]} \otimes 1 \in A
$$

So in the quotient

$$
B=\left(E\left(i_{1}\right) \otimes A\right) / S
$$

the quantity

$$
m_{E\left(i_{1}\right)}\left(g_{1}^{[\mu]} \otimes g_{1}^{[\gamma]}\right) \otimes 1 \otimes 1 \otimes 1=g_{1}^{[\mu+\gamma]} \otimes 1 \otimes 1 \otimes 1
$$

is identified with the tensor

$$
1 \otimes g_{1}^{[\mu]} \otimes g_{1}^{[\gamma]} \otimes 1 \in E\left(i_{1}\right) \otimes A
$$

Thus the Baer product $\left[E_{\mu}\right] *\left[E_{\gamma}\right]$ is
$E_{\mu+\gamma}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu+\gamma]}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R$,
which is an element of $\mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$.

5. Application to Hopf orders: a Result of Tossici

Next, let $C_{p^{2}}=\left\langle g_{1}, g_{2}\right\rangle$ with $g_{2}^{p}=g_{1}$. Let D be an arbitrary R-Hopf order in $K\left[C_{p^{2}}\right]$.

Then there is a short exact sequence

$$
E: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} D \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

where

$$
E\left(i_{1}\right)=R\left[\frac{g_{2}^{p}-1}{\pi^{i_{1}}}\right] \text { and } E\left(i_{2}\right)=R\left[\frac{\bar{g}_{2}-1}{\pi^{i_{2}}}\right]
$$

are R-Hopf orders in $K\left[C_{p}\right]$.

Proposition 4.

$p i_{2} \leq i_{1}$.

Proof.
Let $E\left(i_{1}\right)^{+}$denote the augmentation ideal of $E\left(i_{1}\right)$. Since

$$
D / j\left(E\left(i_{1}\right)^{+}\right) D=E\left(i_{2}\right)
$$

the lift of the generator $\frac{\bar{g}_{2}-1}{\pi^{i_{2}}} \in E\left(i_{2}\right)$ must appear as

$$
\frac{g_{2}-1}{\pi^{i_{2}}}+h,
$$

for some $h \in j\left(E\left(i_{1}\right)^{+}\right) D$.

As $\operatorname{char}(K)=p$, we obtain

$$
\left(\frac{g_{2}-1}{\pi^{i_{2}}}+h\right)^{p}=\frac{g_{1}-1}{\pi^{p i_{2}}} \in E\left(i_{1}\right),
$$

thus $p i_{2} \leq i_{1}$.

Since $p i_{2} \leq i_{1}$ (Proposition 4), there exists a distinguished extension

$$
\begin{aligned}
& E_{0}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R, \\
g_{2}^{p} & =g_{1} .
\end{aligned}
$$

Proposition 5.

In the group $\left\langle\mathcal{E}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right), *\right\rangle$, the inverse of E_{0} is

$$
E_{0}^{-1}: R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}^{p-1}-1}{\pi^{i_{1}}}, \frac{g_{2}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

with $g_{2}^{p}=g_{1}^{p-1}$.

Proof.
We compute the Baer product $\left[E_{0}\right] *\left[E_{0}^{-1}\right]$. In this case,

$$
g_{2} \otimes g_{2} \otimes \bar{g}_{2} \in A
$$

And so,

$$
\left(g_{2} \otimes g_{2} \otimes \bar{g}_{2}\right)^{p}=g_{1} \otimes g_{1}^{p-1} \otimes 1 \in A .
$$

Now in the quotient $B=\left(E\left(i_{1}\right) \otimes A\right) / S$, we have

$$
\begin{aligned}
\left(1 \otimes g_{2} \otimes g_{2} \otimes \bar{g}_{2}\right)^{p} & =1 \otimes g_{1} \otimes g_{1}^{p-1} \otimes 1 \\
& =g_{1} g_{1}^{p-1} \otimes 1 \otimes 1 \otimes 1 \\
& =1 \otimes 1 \otimes 1 \otimes 1
\end{aligned}
$$

and the Baer product $\left[E_{0}\right] *\left[E_{0}^{-1}\right]$ is the trivial element

$$
R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

with $g_{2}^{p}=g_{1}^{p}=1$.

Proposition 6.

The Baer product $[E] *\left[E_{0}^{-1}\right]$ is a generically trivial extension, that is, $[E] *\left[E_{0}^{-1}\right] \in \mathcal{E}_{g t}\left(E\left(i_{2}\right), E\left(i_{1}\right)\right)$, thus

$$
[E] *\left[E_{0}^{-1}\right]=\left[E_{\mu}\right]
$$

for some $\mu \in K$.

Proof.
Use the formula

$$
K \otimes\left(\left[E_{\mu}\right] *\left[E_{\gamma}\right]\right) \cong\left[K \otimes E_{\mu}\right] *\left[K \otimes E_{\gamma}\right]
$$

Proposition 7.

The extension E appears as

$$
R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

for some $\mu \in K$ with $\nu\left(\wp(\mu) \geq i_{2}-p i_{1}, g_{2}^{p}=g_{1}, g_{1}^{p}=1\right.$.

Proof.
Assuming Proposition 6, we have

$$
\left([E] *\left[E_{0}^{-1}\right]\right) *\left[E_{0}\right]=\left[E_{\mu}\right] *\left[E_{0}\right]
$$

for some $\mu \in K$. Thus

$$
[E]=\left[E_{\mu}\right] *\left[E_{0}\right]
$$

And the Baer product $\left[E_{\mu}\right] *\left[E_{0}\right]$ can be computed as

$$
R \longrightarrow E\left(i_{1}\right) \xrightarrow{j} R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] \xrightarrow{s} E\left(i_{2}\right) \longrightarrow R,
$$

$g_{2}^{p}=g_{1}, g_{1}^{p}=1$, which is the extension E.

6. Hopf orders in $K\left[C_{p^{2}} \times C_{p}\right], K\left[C_{p} \times C_{p^{2}}\right], K\left[C_{p^{3}}\right]$

Let $E\left(i_{1}, i_{2}, \mu\right)$ be an R-Hopf order in $K\left[C_{p}^{2}\right]$ and let $E\left(i_{3}\right)$ be an R-Hopf order in $K\left[C_{p}\right]$.

U (2022) has classified the generically trivial extensions $\mathcal{E}_{g t}\left(E\left(i_{3}\right), E\left(i_{1}, i_{2}, \mu\right)\right)$.

Proposition 8.

The group $\mathcal{E}_{g t}\left(E\left(i_{3}\right), E\left(i_{1}, i_{2}, \mu\right)\right)$ is isomorphic to the additive subgroup of

$$
K^{2} /\left(\mathbb{F}_{p}(\mu,-1)+\left(\mathbb{F}_{p}+\mathfrak{m}^{i_{3}-i_{1}}\right) \times \mathfrak{m}^{i_{3}-i_{2}}\right)
$$

represented by pairs $(\alpha, \beta) \in K^{2}$ which satisfy $\nu(\wp(\alpha)+\wp(\mu) \beta) \geq i_{3}-p i_{1}$ and $\nu(\wp(\beta)) \geq i_{3}-p i_{2}$.

An element in $\mathcal{E}_{g t}\left(E\left(i_{3}\right), E\left(i_{1}, i_{2}, \mu\right)\right)$ appears as

$$
\begin{aligned}
E_{\alpha, \beta}: R \rightarrow E\left(i_{1}, i_{2}, \mu\right) \rightarrow & R\left[\frac{g_{1}-1}{\pi^{i_{1}}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}, \frac{g_{3} g_{1}^{[\alpha]}\left(g_{2} g_{1}^{[\mu]}\right)^{[\beta]}-1}{\pi^{i_{3}}}\right] \\
& \rightarrow E\left(i_{3}\right) \rightarrow R .
\end{aligned}
$$

The middle term is an R-Hopf order in $K\left[C_{p}^{3}\right]$. Here, $C_{p}^{3}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle, g_{1}^{p}=g_{2}^{p}=g_{3}^{p}=1$.

Our plan is to use the Baer product to compute extensions whose middle terms are Hopf orders in $K\left[C_{p^{2}} \times C_{p}\right], K\left[C_{p} \times C_{p^{2}}\right]$, or $K\left[C_{p^{3}}\right]$.

For instance, if $g_{1}^{p}=g_{2}^{p}=1, g_{3}^{p}=g_{2}$, then $\left\langle g_{1}, g_{2}, g_{3}\right\rangle=C_{p} \times C_{p^{2}}$.
And if

$$
\frac{g_{2}-1}{\pi^{p i_{3}}} \in E\left(i_{1}, i_{2}, \mu\right)
$$

then there exists a distinguished extension

$$
\begin{aligned}
E_{0}: R \rightarrow E\left(i_{1}, i_{2}, \mu\right) & \rightarrow R\left[\frac{g_{1}-1}{\pi_{1}}, \frac{g_{2} g_{1}^{[\mu]}-1}{\pi^{i_{2}}}, \frac{g_{3}-1}{\pi^{i_{3}}}\right] \\
& \rightarrow E\left(i_{3}\right) \rightarrow R .
\end{aligned}
$$

Consequently, the Baer product $\left[E_{\alpha, \beta}\right] *\left[E_{0}\right]$ is an element of $\mathcal{E}\left(E\left(i_{3}\right), E\left(i_{1}, i_{2}, \mu\right)\right)$, and its middle term is an R-Hopf order in $K\left[C_{p} \times C_{p^{2}}\right]$.

References

(Ch...21] L. N. Childs, C. Greither, K. P. Keating, A. Koch, T. Kohl, P. J. Truman, R. G. Underwood, Hopf Algebras and Galois Module Theory, SURV 260, Amer. Math Soc., 2021.
围 [EU17] G. G. Elder, R. G. Underwood, Finite group scheme extensions, and Hopf orders in $K C_{p}^{2}$ over a characteristic p discrete valuation ring, New York J. Math., 23, 2017, 11-39.
[[To10] D. Tossici, Models of $\mu_{p^{2}, K}$ over a discrete valuation ring, J. Algebra, 323, (2010), 1908-1957.
([Un22] R. Underwood, Hopf orders in $K\left[C_{p}^{3}\right]$ in characteristic p, J. Algebra, 595, (2022), 523-550.

