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1. Introduction

Let p be prime and let K be a field of characteristic p that is
complete with respect to a discrete valuation ν : K → Z ∪ {∞}.
Let R denote the valuation ring with unique maximal ideal
m = (π), ν(π) = 1.

Let Cn
p denote the elementary abelian group of order pn and let

Cpn denote the cyclic group of order pn for n = 1, 2, 3.

For i1, i2 ≥ 0 integers, Cp = ⟨g1⟩, let

E (i1) = R

[
g1 − 1

πi1

]
and E (i2) = R

[
g1 − 1

πi2

]
be Hopf orders in K [Cp].
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Let E(E (i2),E (i1)) denote the set of equivalence classes of short
exact sequences of Hopf orders

R −→ E (i1)
j−→ H

s−→ E (i2) −→ R. (1)

We can endow E(E (i2),E (i1)) with the Baer product ∗, so that
E(E (i2),E (i1)) is a group.
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There is a subgroup Egt(E (i2),E (i1)) of E(E (i2),E (i1)), consisting
of the generically trivial extensions, i.e., those extensions of the
form (1) which after tensoring with K , appear as

K −→ K [Cp]
j−→ K [Cp × Cp]

s−→ K [Cp] −→ K . (2)

G. G. Elder and U (2017) have classified the subgroup
Egt(E (i2),E (i1)).
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Elements of Egt(E (i2),E (i1)) appear as

Eµ : R −→ E (i1)
j−→ E (i1, i2, µ)

s−→ E (i2) −→ R,

where the middle term is a truncated exponential Hopf order in
K [Cp × Cp] of the form

E (i1, i2, µ) = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
.

Here µ is an element of K that satisfies the valuation condition
ν(℘(µ)) ≥ i2 − pi1, and gp

1 = gp
2 = 1.

6 / 44



Passing to the cyclic case, let D denote an arbitrary R-Hopf order
in K [Cp2 ], Cp2 = ⟨g2⟩, gp

2 = g1.

From the short exact sequence of groups

{1} −→ ⟨gp
2 ⟩

j−→ Cp2
s−→ ⟨g2⟩ −→ {1}, (3)

we obtain a short exact sequence of K -Hopf algebras,

K −→ K [Cp]
j−→ K [Cp2 ]

s−→ K [Cp] −→ K . (4)
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Since is an D is R-Hopf order in K [Cp2 ], from (4) we obtain a
short exact sequence of R-Hopf orders

E : R −→ E (i1)
j−→ D

s−→ E (i2) −→ R,

where

E (i1) = R

[
gp
2 − 1

πi1

]
and E (i2) = R

[
g2 − 1

πi2

]
are R-Hopf orders in K [Cp].
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Because char(K ) = p, we must have pi2 ≤ i1.

Consequently, there is a distinguished extension

E0 : R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2 − 1

πi2

]
s−→ E (i2) −→ R

whose middle term is an R-Hopf order in K [Cp2 ] (a Larson order).

In the group ⟨E(E (i2),E (i1)), ∗⟩, the inverse of E0 is

E−1
0 : R −→ E (i1)

j−→ R

[
gp−1
1 − 1

πi1
,
g2 − 1

πi2

]
s−→ E (i2) −→ R,

with gp
2 = gp−1

1 .
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Thus, under the Baer product,

[E ] ∗ [E−1
0 ]

is a generically trivial extension in Egt(E (i2),E (i1)) and is thus of
the form [Eµ] for some µ ∈ K .

And so,
[E ] = [Eµ] ∗ [E0].
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In this manner, we can classify E ; the middle term of E is

D = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
, gp

2 = g1, g
p
1 = 1,

which is an R-Hopf order in K [Cp2 ].

So, in this way we obtain a complete classification of R-Hopf
orders in K [Cp2 ].

(And thus, recover a result of D. Tossici (2010).)
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2. The Baer Product, I

The following discussion of the Baer product was outlined in
[Ch...21, Section 12.6.1].

Let H, H ′ be commutative, cocommutative R-Hopf algebras and
let E(H ′,H) denote the set of equivalence classes of short exact
sequences of R-Hopf algebras; E(H ′,H) contains the extensions of
H by H ′.

On E(H ′,H) we define a multiplication as follows. Let

E1 : R → H
j1→ H1

s1→ H ′ → R,

E2 : R → H
j2→ H2

s2→ H ′ → R,

be short exact sequences of R-Hopf algebras.
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Since the tensor product of two Hopf algebras is again a Hopf
algebra, we obtain a short exact sequence of R-Hopf algebras,

R → H ⊗R H
j1⊗j2→ H1 ⊗R H2

s1⊗s2→ H ′ ⊗R H ′ → R,

(j1 ⊗ j2)(a⊗ b) = j1(a)⊗ j2(b), (s1 ⊗ s2)(x ⊗ y) = s1(x)⊗ s2(y),

Let the pair of morphisms α : A → H1 ⊗R H2, β : A → H ′ be the
pull-back of (s1 ⊗ s2,∆H′), that is,

A = {(
∑
i

xi⊗yi )⊗z ∈ H1⊗H2⊗H ′ | (s1⊗s2)(
∑
i

xi⊗yi ) = ∆H′(z)},

α((
∑

i xi ⊗ yi )⊗ z) =
∑

i xi ⊗ yi and β((
∑

i xi ⊗ yi )⊗ z) = z .
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Then there is a commutative diagram with exact rows:

R → H ⊗R H
j1⊗j2→ H1 ⊗R H2

s1⊗s2→ H ′ ⊗R H ′ → R
∥ ∥ α ↑ ∆H′ ↑ ∥
R → H ⊗R H

j→ A
β→ H ′ → R

In fact, A is an R-Hopf algebra. As evidence...
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Proposition 1.

Let mH1⊗H2⊗H′ denote multiplication in H1 ⊗ H2 ⊗ H ′ and let
∆H1⊗H2⊗H′ denote comultiplication in H1 ⊗ H2 ⊗ H ′. Then

(i) mH1⊗H2⊗H′(A⊗ A) ⊆ A,

(ii) ∆H1⊗H2⊗H′(A) ⊆ A⊗ A.

Proof
For (i): Let (

∑
k ak ⊗ bk)⊗ c , (

∑
i xi ⊗ yi )⊗ z be elements of A.

Then (s1 ⊗ s2)(
∑

k ak ⊗ bk) = ∆H′(c) and
(s1 ⊗ s2)(

∑
i xi ⊗ yi ) = ∆H′(z). Thus

(s1 ⊗ s2)(
∑
k

∑
i

akxi ⊗ bkyi ) = ∆H′(cz).
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For (ii): From (s1 ⊗ s2)(
∑

i xi ⊗ yi ) = ∆H′(z), we obtain

∆H′⊗H′(s1 ⊗ s2)(
∑
i

xi ⊗ yi ) = ∆H′⊗H′∆H′(z).

Now, the LHS is equal to

((s1 ⊗ s2)⊗ (s1 ⊗ s2))∆H1⊗H2(
∑
i

xi ⊗ yi )

= ((s1 ⊗ s2)⊗ (s1 ⊗ s2))
∑
i

∑
(xi ),(yi )

xi (1) ⊗ yi (1) ⊗ xi (2) ⊗ yi (2)

=
∑
i

∑
(xi ),(yi )

(s1 ⊗ s2)(xi (1) ⊗ yi (1))⊗ (s1 ⊗ s2)(xi (2) ⊗ yi (2)).
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And the RHS is equal to

(IH′ ⊗ τ ⊗ IH′)(∆H′ ⊗∆H′)∆H′(z)

= (IH′ ⊗ τ ⊗ IH′)
∑
(z)

∆H′(z(1))⊗∆H′(z(2))

= (IH′ ⊗ τ ⊗ IH′)
∑

(z),(z(1)),(z(2))

z(1)(1) ⊗ z(1)(2) ⊗ z(2)(1) ⊗ z(2)(2)

=
∑

(z),(z(1)),(z(2))

z(1)(1) ⊗ z(2)(1) ⊗ z(1)(2) ⊗ z(2)(2)

=
∑

(z),(z(1)),(z(2))

z(1)(1) ⊗ z(1)(2) ⊗ z(2)(1) ⊗ z(2)(2).

The last equality holds since H is cocommutative.
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Thus∑
i

∑
(xi ),(yi )

(s1 ⊗ s2)(xi (1) ⊗ yi (1))⊗ (s1 ⊗ s2)(xi (2) ⊗ yi (2))

=
∑

(z),(z(1)),(z(2))

z(1)(1) ⊗ z(1)(2) ⊗ z(2)(1) ⊗ z(2)(2)

=
∑
(z)

∆H′(z(1))⊗∆H′(z(2)).

Hence,
(
∑
i

xi (1) ⊗ yi (1))⊗ z(1) ∈ A

and
(
∑
i

xi (2) ⊗ yi (2))⊗ z(2) ∈ A.
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To finish the proof of (ii) , let Θ = (IH1⊗H2 ⊗ τ ⊗ IH′). Then

∆H1⊗H2⊗H′((
∑
i

xi ⊗ yi )⊗ z)

= Θ(∆H1⊗H2 ⊗∆H′)((
∑
i

xi ⊗ yi )⊗ z)

= Θ
∑
i

∑
(xi ),(yi ),(z)

xi (1) ⊗ yi (1) ⊗ (xi (2) ⊗ yi (2))⊗ z(1) ⊗ z(2)

=
∑
i

∑
(xi ),(yi ),(z)

(xi (1) ⊗ yi (1) ⊗ z(1))⊗ (xi (2) ⊗ yi (2) ⊗ z(2))

∈ A⊗ A,

as required.
□
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3. The Baer Product, II

Let

R → H ⊗R H
j→ A

β→ H ′ → R

be the short exact sequence as constructed in Part I.

Let m : H ⊗R H → H denote multiplication in H and let the pair of
morphisms ϱ : H → B, i : A → B be the push-out of (m, j), that is,

B = (H ⊗ A)/S

with

S = {m(x ⊗ y)⊗ 1− 1⊗ j(x ⊗ y) ∈ H ⊗ A | x ⊗ y ∈ H ⊗ H},

ϱ(h) = (h ⊗ 1) + S and i(a) = (1⊗ a) + S .
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There is a commutative diagram with exact rows:

R → H ⊗R H
j→ A

β→ H ′ → R
∥ m ↓ i ↓ ∥ ∥

E : R → H
ϱ→ B → H ′ → R

The bottom row E is a short exact sequence of Hopf algebras.

Let [E ] be the equivalence class of E , which is an element of
E(H ′,H). Let [E1], [E2] be the classes of E1, E2, respectively.

Then [E ] is the Baer product ∗ of classes of extensions;

[E ] = [E1] ∗ [E2].
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We know that H ⊗ A is an R-Hopf algebra. In order for the
quotient

B = (H ⊗ A)/S

to be a Hopf algebra, S should be a Hopf ideal, that is, S is a
biideal (ideal + coideal) that satisfies σH⊗A(S) ⊆ S .

We prove the coideal property under the very special conditions
that H = E (i1), H

′ = E (i2) are R-Hopf orders in K [Cp], and
H1 = E (i1, i2, µ) and H2 = E (i1, i2, γ) are R-Hopf orders in K [Cp2 ],
with ⟨g2⟩ = Cp2 , g

p
2 = g1.
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In this case,

A ⊆ E (i1, i2, µ)⊗ E (i1, i2, γ)⊗ E (i2),

H ⊗ A = E (i1)⊗ A.

Proposition 2.

S is a coideal of E (i1)⊗ A, that is, εE(i1)⊗A(S) = 0 and

∆E(i1)⊗A(S) ⊆ S ⊗ (E (i1)⊗ A) + (E (i1)⊗ A)⊗ S ,

Proof. Let

h = g2
1 ⊗ 1⊗ 1⊗ 1− 1⊗ g1 ⊗ g1 ⊗ 1.

Then h is an element of S ⊆ E (i1)⊗ A. We have εE(i1)⊗A(h) = 0.
So it remains to show that

∆E(i1)⊗A(h) ∈ S ⊗ (E (i1)⊗ A) + (E (i1)⊗ A)⊗ S .
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We have

∆E(i1)⊗A(g
2
1 ⊗ 1⊗ 1⊗ 1)

= (IE(i1) ⊗ τ ⊗ IA)(∆E(i1) ⊗∆A)(g
2
1 ⊗ 1⊗ 1⊗ 1)

= (IE(i1) ⊗ τ ⊗ IA)(g
2
1 ⊗ g2

1 ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1)

= g2
1 ⊗ 1⊗ 1⊗ 1⊗ g2

1 ⊗ 1⊗ 1⊗ 1.
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On the other hand,

∆E(i1)⊗A(1⊗ g1 ⊗ g1 ⊗ 1)

= (IE(i1) ⊗ τ ⊗ IA)(∆E(i1) ⊗∆A)(1⊗ g1 ⊗ g1 ⊗ 1)

= (IE(i1) ⊗ τ ⊗ IA)(1⊗ 1⊗∆A(g1 ⊗ g1 ⊗ 1))

= (IE(i1) ⊗ τ ⊗ IA)(1⊗ 1⊗ g1 ⊗ g1 ⊗ 1⊗ g1 ⊗ g1 ⊗ 1)

= 1⊗ g1 ⊗ g1 ⊗ 1⊗ 1⊗ g1 ⊗ g1 ⊗ 1.

Thus

∆E(i1)⊗A(h) = g2
1 ⊗ 1⊗ 1⊗ 1⊗ g2

1 ⊗ 1⊗ 1⊗ 1

− 1⊗ g1 ⊗ g1 ⊗ 1⊗ 1⊗ g1 ⊗ g1 ⊗ 1.
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Now,

(g2
1 ⊗1⊗1⊗1)⊗(g2

1 ⊗1⊗1⊗1)−(1⊗g1⊗g1⊗1)⊗(1⊗g1⊗g1⊗1)

= g2
1 ⊗ 1⊗ 1⊗ 1⊗ g2

1 ⊗ 1⊗ 1⊗ 1− 1⊗ g1⊗ g1⊗ 1⊗ g2
1 ⊗ 1⊗ 1⊗ 1

+ 1⊗g1⊗g1⊗1⊗g2
1 ⊗1⊗1⊗1−1⊗g1⊗g1⊗1⊗1⊗g1⊗g1⊗1

= (g2
1 ⊗ 1⊗ 1⊗ 1− 1⊗ g1 ⊗ g1 ⊗ 1)⊗ g2

1 ⊗ 1⊗ 1⊗ 1

+ 1⊗ g1 ⊗ g1 ⊗ 1⊗ (g2
1 ⊗ 1⊗ 1⊗ 1− 1⊗ g1 ⊗ g1 ⊗ 1),

which is in
S ⊗ (E (i1)⊗ A) + (E (i1)⊗ A)⊗ S .

□
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4. Application to Hopf orders: Egt(E (i2),E (i1))

As shown in Elder and U (2017), all of the elements in
Egt(E (i2),E (i1)) have been classified.

For x ∈ K , let ℘(x) = xp − x .

Proposition 3 (Elder, U).

The subgroup Egt(E (i2),E (i1)) is isomorphic to the additive
subgroup of K/(Fp +mi2−i1) represented by those elements µ ∈ K
satisfying ν(℘(µ)) ≥ i2 − pi1.
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In more detail: an element in Egt(E (i2),E (i1)) can be written as

Eµ : R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
s−→ E (i2) −→ R,

for some µ ∈ K with ν(℘(µ) ≥ i2 − pi1. Note: g
p
1 = gp

2 = 1.

So we let Eµ, Eγ be two elements of Egt(E (i2),E (i1)) and compute
the Baer product [Eµ] ∗ [Eγ ].
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In this case, H = E (i1),

H1 = R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
,

H2 = R

[
g1 − 1

πi1
,
g2g

[γ]
1 − 1

πi2

]
,

H ′ = E (i2), and

A ⊆ R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
⊗ R

[
g1 − 1

πi1
,
g2g

[γ]
1 − 1

πi2

]
⊗ E (i2).
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Now as g
[µ]
1 , g

[γ]
1 ∈ E (i1) and s1(g

[µ]
1 ) = s2(g

[γ]
1 ) = 1, we have

g
[µ]
1 ⊗ g

[γ]
1 ⊗ 1 ∈ A.

So in the quotient
B = (E (i1)⊗ A)/S ,

the quantity

mE(i1)(g
[µ]
1 ⊗ g

[γ]
1 )⊗ 1⊗ 1⊗ 1 = g

[µ+γ]
1 ⊗ 1⊗ 1⊗ 1

is identified with the tensor

1⊗ g
[µ]
1 ⊗ g

[γ]
1 ⊗ 1 ∈ E (i1)⊗ A.
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Thus the Baer product [Eµ] ∗ [Eγ ] is

Eµ+γ : R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2g

[µ+γ]
1 − 1

πi2

]
s−→ E (i2) −→ R,

which is an element of Egt(E (i2),E (i1)).
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5. Application to Hopf orders: a Result of Tossici

Next, let Cp2 = ⟨g1, g2⟩ with gp
2 = g1. Let D be an arbitrary

R-Hopf order in K [Cp2 ].

Then there is a short exact sequence

E : R −→ E (i1)
j−→ D

s−→ E (i2) −→ R,

where

E (i1) = R

[
gp
2 − 1

πi1

]
and E (i2) = R

[
g2 − 1

πi2

]
are R-Hopf orders in K [Cp].

32 / 44



Proposition 4.

pi2 ≤ i1.

Proof.
Let E (i1)

+ denote the augmentation ideal of E (i1). Since

D/j(E (i1)
+)D = E (i2),

the lift of the generator g2−1

πi2
∈ E (i2) must appear as

g2 − 1

πi2
+ h,

for some h ∈ j(E (i1)
+)D.
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As char(K ) = p, we obtain(
g2 − 1

πi2
+ h

)p

=
g1 − 1

πpi2
∈ E (i1),

thus pi2 ≤ i1.
□

Since pi2 ≤ i1 (Proposition 4), there exists a distinguished
extension

E0 : R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2 − 1

πi2

]
s−→ E (i2) −→ R,

gp
2 = g1.
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Proposition 5.

In the group ⟨E(E (i2),E (i1)), ∗⟩, the inverse of E0 is

E−1
0 : R −→ E (i1)

j−→ R

[
gp−1
1 − 1

πi1
,
g2 − 1

πi2

]
s−→ E (i2) −→ R,

with gp
2 = gp−1

1 .

Proof.
We compute the Baer product [E0] ∗ [E−1

0 ]. In this case,

g2 ⊗ g2 ⊗ g2 ∈ A.

35 / 44



And so,
(g2 ⊗ g2 ⊗ g2)

p = g1 ⊗ gp−1
1 ⊗ 1 ∈ A.

Now in the quotient B = (E (i1)⊗ A)/S , we have

(1⊗ g2 ⊗ g2 ⊗ g2)
p = 1⊗ g1 ⊗ gp−1

1 ⊗ 1

= g1g
p−1
1 ⊗ 1⊗ 1⊗ 1

= 1⊗ 1⊗ 1⊗ 1,
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and the Baer product [E0] ∗ [E−1
0 ] is the trivial element

R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2 − 1

πi2

]
s−→ E (i2) −→ R,

with gp
2 = gp

1 = 1.
□
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Proposition 6.

The Baer product [E ] ∗ [E−1
0 ] is a generically trivial extension, that

is, [E ] ∗ [E−1
0 ] ∈ Egt(E (i2),E (i1)), thus

[E ] ∗ [E−1
0 ] = [Eµ],

for some µ ∈ K.

Proof.
Use the formula

K ⊗ ([Eµ] ∗ [Eγ ]) ∼= [K ⊗ Eµ] ∗ [K ⊗ Eγ ].

□
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Proposition 7.

The extension E appears as

R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
s−→ E (i2) −→ R,

for some µ ∈ K with ν(℘(µ) ≥ i2 − pi1, g
p
2 = g1, g

p
1 = 1.

Proof.
Assuming Proposition 6, we have

([E ] ∗ [E−1
0 ]) ∗ [E0] = [Eµ] ∗ [E0],

for some µ ∈ K . Thus

[E ] = [Eµ] ∗ [E0].
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And the Baer product [Eµ] ∗ [E0] can be computed as

R −→ E (i1)
j−→ R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2

]
s−→ E (i2) −→ R,

gp
2 = g1, g

p
1 = 1, which is the extension E . □
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6. Hopf orders in K [Cp2 × Cp], K [Cp × Cp2], K [Cp3]

Let E (i1, i2, µ) be an R-Hopf order in K [C 2
p ] and let E (i3) be an

R-Hopf order in K [Cp].

U (2022) has classified the generically trivial extensions
Egt(E (i3),E (i1, i2, µ)).

Proposition 8.

The group Egt(E (i3),E (i1, i2, µ)) is isomorphic to the additive
subgroup of

K 2/(Fp(µ,−1) + (Fp +mi3−i1)×mi3−i2)

represented by pairs (α, β) ∈ K 2 which satisfy
ν(℘(α) + ℘(µ)β) ≥ i3 − pi1 and ν(℘(β)) ≥ i3 − pi2.
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An element in Egt(E (i3),E (i1, i2, µ)) appears as

Eα,β : R → E (i1, i2, µ) → R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2
,
g3g

[α]
1 (g2g

[µ]
1 )[β] − 1

πi3

]

→ E (i3) → R.

The middle term is an R-Hopf order in K [C 3
p ]. Here,

C 3
p = ⟨g1, g2, g3⟩, gp

1 = gp
2 = gp

3 = 1.

Our plan is to use the Baer product to compute extensions whose
middle terms are Hopf orders in K [Cp2 × Cp], K [Cp × Cp2 ], or
K [Cp3 ].
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For instance, if gp
1 = gp

2 = 1, gp
3 = g2, then ⟨g1, g2, g3⟩ = Cp ×Cp2 .

And if
g2 − 1

πpi3
∈ E (i1, i2, µ),

then there exists a distinguished extension

E0 : R → E (i1, i2, µ) → R

[
g1 − 1

πi1
,
g2g

[µ]
1 − 1

πi2
,
g3 − 1

πi3

]
→ E (i3) → R.

Consequently, the Baer product [Eα,β] ∗ [E0] is an element of
E(E (i3),E (i1, i2, µ)), and its middle term is an R-Hopf order in
K [Cp × Cp2 ].
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