The Baer Product and Extensions of Hopf Orders

Robert G. Underwood
Department of Mathematics
Department of Computer Science
Auburn University at Montgomery
Montgomery, Alabama

N
“Hh’r

AUBURN

June 4, 2024

1/44



Contents

1. Introduction

2. The Baer Product, |

3. The Baer Product, Il

4. Application to Hopf Orders: E,(E(i2), E(i1))
5. Application to Hopf Orders: a Result of Tossici

6. Hopf Orders in K[C2 x C,], K[C, x Cp], K[Cp]

2/44



1. Introduction

Let p be prime and let K be a field of characteristic p that is
complete with respect to a discrete valuation v : K — Z U {oo}.
Let R denote the valuation ring with unique maximal ideal
m=(m), v(r) =1.

Let C; denote the elementary abelian group of order p” and let
Cpn denote the cyclic group of order p” for n =1,2,3.

For i1, i > 0 integers, C, = (g1), let

E(i) = R [gl - 1} and E(ip) = R [gl — }

s 2

be Hopf orders in K[Cp).
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Let £(E(i2), E(i1)) denote the set of equivalence classes of short
exact sequences of Hopf orders

R — E(i) -5 H - E(i) — R. (1)

We can endow E(E(i2), E(i1)) with the Baer product *, so that
E(E(R), E(i1)) is a group.
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There is a subgroup &g (E(i2), E(i1)) of E(E(i2), E(i1)), consisting
of the generically trivial extensions, i.e., those extensions of the
form (1) which after tensoring with K, appear as

K — K[Co] 5 K[Cp x Cp] = K[Cp] — K. (2)

G. G. Elder and U (2017) have classified the subgroup
Egt(E(2), E(1n)).
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Elements of Eg¢(E(i2), E(i1)) appear as

E,: R— E(i) -2 E(iv, ip, p1) = E(in) — R,

where the middle term is a truncated exponential Hopf order in
K[Cp x Cp] of the form

i 2

(1]
-1 -1
E(il,ig,,u) =R [gl - £28, ] .

Here 1 is an element of K that satisfies the valuation condition
v(p(p)) > o — pir, and gf = g5 = 1.

6/44



Passing to the cyclic case, let D denote an arbitrary R-Hopf order
in f([Cbz], Cbz ::<gg>, gé’zz 81-

From the short exact sequence of groups

(1} — (g8) L5 G =5 (75) — {1}, (3)

we obtain a short exact sequence of K-Hopf algebras,

K — K[Co] L+ K[Cp] =+ K[Cp] — K. (4)
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Since is an D is R-Hopf order in K[C], from (4) we obtain a
short exact sequence of R-Hopf orders

E: R— E(it) 25 D -5 E(ib) — R,

where

E(i) =R [g5 - 1} and E() = R [gfl}

s

are R-Hopf orders in K[Cp].
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Because char(K) = p, we must have pip < ij.

Consequently, there is a distinguished extension

- 1 g1
EO:R—>E(i1)L>R[g1. 82 ]AE(@)—W

mh 2

whose middle term is an R-Hopf order in K[C,] (a Larson order).

In the group (E(E(i2), E(i1)), *), the inverse of Eg is

glpfl—l g —1

-1, Ly J
E;: R— E(h) —R s 7

] =5 E(ih) — R,

with gb = gffl.
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Thus, under the Baer product,
[E] * [E5 ]

is a generically trivial extension in Eg(E(i2), E(i1)) and is thus of
the form [E,] for some p € K.

And so,
[E] = [Eu] * [Eo]-
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In this manner, we can classify E; the middle term of E is
-1 pe -1

b
mh

D=R

2

] , 8 =g1,80 =1,

which is an R-Hopf order in K[C].

So, in this way we obtain a complete classification of R-Hopf
orders in K[Cp].

(And thus, recover a result of D. Tossici (2010).)
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2. The Baer Product, |

The following discussion of the Baer product was outlined in
[Ch...21, Section 12.6.1].

Let H, H' be commutative, cocommutative R-Hopf algebras and
let £(H', H) denote the set of equivalence classes of short exact

sequences of R-Hopf algebras; £(H’, H) contains the extensions of
Hby H'.

On E(H', H) we define a multiplication as follows. Let

E.: RoHA H 3 H R,

Er: RoH2AR H, 3 H R,

be short exact sequences of R-Hopf algebras.

12/ 44



Since the tensor product of two Hopf algebras is again a Hopf
algebra, we obtain a short exact sequence of R-Hopf algebras,

R— Hor H S Hy @p Hy 52 H @ H' — R,
(1 ®j2)(a® b) = ji(a) ®j2(b), (51 ® 82)(x ® y) = s51(x) ® s2(y),

Let the pair of morphisms a: A — H; ®g Ha, B: A — H’ be the
pull-back of (s1 ® sp, Apyr), that is,

A= {(Z xi®y;)®z € Hi@Hy@H' | (51@52)(Z xi®yi) = Dpr(2)},

1 1

a(Qixi®y)®z)=>ix®y and B((O;xi ®y) ®z) =z
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Then there is a commutative diagram with exact rows:

R — HoprH ™ HioopH, ™22 HeorH — R
H I et Awt H
R — HegH & A LA H = R

In fact, A is an R-Hopf algebra. As evidence...
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Proposition 1.

Let mpy, gm0 denote multiplication in Hy @ Hy @ H' and let
Ap oH,eH denote comultiplication in Hy @ Ho @ H'. Then

(i) Moo (A® A) C A,
(i) Aperor (A) CA® A

Proof
For (i): Let (D", ak @ bx) @ ¢, (D, xi ® yi) ® z be elements of A.

Then (51 ® )(D_4 ak ® bk) = Ap(c) and
(512 9)> 0 xi®yi) =Ap(z). Thus

(s1® 52)(2 Z akxj @ bryi) = Apr(cz).

k i
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For (ii): From (s1 ® 2)(>_; xi ® i) = Apr(z), we obtain

A (1@ ) xi®yi) = Dpar A (2).

Now, the LHS is equal to
(51 ® ) ® (51 ® 92)) Aty m,( ZXI ® yi)
= (299)0(m®%)) Z Xi(1) ® Yi(1) ® Xi(2) ® Yi(2)

i (xi),(vi)

= Z Z 51 ® S (X,(l) ® Yia ) (s1 ®52)(X,'(2) ®y,-(2)).
(%), (vi)
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And the RHS is equal to

(I © 7@ Iy )(Awr @ Apr)Apr(2)

= (IH’ RXTR IH’) ZAH’(Z(I)) & AH/(Z(2))
(2)

= (I ®7® ) Z 21)(1) © 21)(2) @ A2)(1) © 42)(2)
(2):(z1)):(z(2))

= > Z(1)(1) @ A2) (1) © AV 2) © )2
(2):(z1))(2(2))

= ) Z(1)(1) @ AV (2) © A2) 1) © 22) 2)
(2):(z1))(2(2))

The last equality holds since H is cocommutative.
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Thus

YD (1@ %) (X @ i) @ (51 @ 2)(Xi2) @ Vi)
i (xi),(vi)

= Y 2y @ Ae © A0 @A)
(2):(z1))(22))

— ZAH/ ) @ Apr(z(2))-

Hence,
(D xi) ® yiq) ® ) € A

and
ZX' ) @ Yi2)) ® 22) € A
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To finish the proof of (ii) , let © = (In,oH, ® T @ Iiyr). Then

Amamen (D xi@yi)®2)

i

= O(AmaH, ® AH/)((Z: X ®yi) © z)

i

=0) > xa)®yia® (X ©Yie) ®21) @ 2
i (). 002)

— Z Z (Xi(1) ® ¥iq) @ z(1)) @ (Xi(2) ® Yi2) @ Z(2))
i (xi),(yi),(2)
EARA,

as required.
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3. The Baer Product, II

Let

RosHorHS AL H SR

be the short exact sequence as constructed in Part .

Let m: H®gr H — H denote multiplication in H and let the pair of
morphisms o : H — B, i : A — B be the push-out of (m, ), that is,

B=(H®A)/S
with

S={mxey)®l1-10j(xRy)c HOA|x®y € H® H},

o(h)=(h®1l)+Sandi(a)=(1®a)+S.

20/ 44



There is a commutative diagram with exact rows:

R - HorH % A 5 H S R

| m ] il I I
E: R — H 4 B - H — R

The bottom row E is a short exact sequence of Hopf algebras.

Let [E] be the equivalence class of E, which is an element of
E(H', H). Let [E1], [E2] be the classes of Ej, E, respectively.

Then [E] is the Baer product * of classes of extensions;

[E] = [E1] * [E2].
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We know that H ® A is an R-Hopf algebra. In order for the
quotient
B=(H®A)/S

to be a Hopf algebra, S should be a Hopf ideal, that is, S is a
biideal (ideal + coideal) that satisfies oyga(S) € S.

We prove the coideal property under the very special conditions
that H = E(i1), H' = E(ix) are R-Hopf orders in K[C,], and

Hy = E(i1, i, pt) and Ha = E(i1, i2,7) are R-Hopf orders in K[C],
with (g2) = Cp2, gy =g
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In this case,
A C E(ir,ia, 1) ® E(ir,i2,7) ® E(i2),
H®o A= E(h)® A.

Proposition 2.
S is a coideal of E(i1) ® A, that is, eg(j;)a(S) = 0 and

Ap(inza(S) S S®@(E(h) @A)+ (E(h) ® A) ® S,

Proof. Let
h=g2®1101-10g0a ® 1.

Then h is an element of S C E(i1) ® A. We have eg(;;)ga(h) = 0.
So it remains to show that

Apinyealh) € S®@(E() @A)+ (E(h) ® A) @ S.
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We have

Aeiyealgl ®1®1®1)

= (le(y ® T @ L) (Agi) ® Da)(gf ©®1®1® 1)
= (g @7 h)(fegelolelolelel)
= 2191010201011
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On the other hand,

Ap(ieall® g1 ® g1 ®1)

= (leiy) @ T @A) (D) @ Aa)(1® g1 @ g1 ® 1)

= (e @T@1a)(1®1® As(g1® g1 ® 1))

= (g7 h)(lelega®log ®eg ®1)
=101l ga ®g ®1.

Thus

Apipeah) =gi®l01lelogelolol
- 19ga®91l10g ®g 1.
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Now,

(61 ®1R1e1)®(6f®lolel) - (leg g R1)®(l1og®e ®1)
= 2219191082 919101-18519aR1R4201R1®1

+10a2aR1lRg01lolel-10g60aR1legaRea®1
= (olelel-10a0a01)0gelelol
+1eaeaRle(Eelelel-10ga g ®1),

which is in
S (E(h)®@A)+(E(hl))®A)®S.
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4. Application to Hopf orders: £,.(E(i2), E(i1))

As shown in Elder and U (2017), all of the elements in
Egt(E(i2), E(i1)) have been classified.

For x € K, let p(x) = xP — x.

Proposition 3 (Elder, U).

The subgroup Eg(E(ix), E(i1)) is isomorphic to the additive
subgroup of K /(F, + m?2~11) represented by those elements p € K
satisfying v(p(p)) > i> — pi.
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In more detail: an element in &, (E(i2), E(i1)) can be written as

. (1]
-1 -1
EH: R—)E(il) EEEN R[gl - ’gzgl -

mh 2

] =5 E(h) — R,

for some u € K with v(p(p) > io — pir. Note: gl = g5 = 1.

So we let E,, E, be two elements of Eg¢(E(i2), E(i1)) and compute
the Baer product [E,] * [E,].
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In this case, H = E(iy),

[ -1 [1] _ 1_
H1 = R gl - 7g2g1 B 9
mh 2

H2 =R o 5 2 ’
H' = E(i»), and
ACR g —1 gzgl[“]—l Rgl—l gzglh]_l E(i
= P " | ®E(R)
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Now as gl gDl € E(i) and s (g!") = s,(g}) = 1, we have

gMeglaiea

So in the quotient
B = (E()® A)/S,

the quantity
(o [v] _ ]
meiy(el” ©g)®lelel=g"elelol
is identified with the tensor

10g"wgMw1eE@) e A
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Thus the Baer product [E,] * [E,] is

g—1 gel ™1

mh i

Evir: R— E()) 25 R

] =5 E(b) — R,

which is an element of Eg¢(E(i2), E(i1)).
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5. Application to Hopf orders: a Result of Tossici

Next, let C,o = (g1, 82) with g5 = g1. Let D be an arbitrary
R-Hopf order in K[C].

Then there is a short exact sequence

E: R— E(it) 25 D -5 E(i) — R,

where

E(h) = R [gg - 1} and E(i) = R [gz — 1}

i T2

are R-Hopf orders in K[C].
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Proposition 4.
pi> < .

Proof.
Let E(i1)" denote the augmentation ideal of E(i1). Since

D/j(E(i)*)D = E(i2),
the lift of the generator %—;1 € E(ip) must appear as

g —1
i

+ h,

for some h € j(E(ih)")D.
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As char(K) = p, we obtain

g —1 Pg—1 .
< p +h> = v EE(I]_)7

2

thus pip < i7.

Since pi < iy (Proposition 4), there exists a distinguished
extension

j -1 -1
Eo : R—>E(i1)L>R[g1.,g2.
h 2

8 = 81-

} =5 E() — R,
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Proposition 5.
In the group (E£(E(i2), E(i1)),*), the inverse of Ey is

-1
gl -1 g@—1
0k

Eﬁ:R—AHMJAR[ ]i+ﬂ@—+&

with gy = gf_l.

Proof.
We compute the Baer product [Eg] * [E; *]. In this case,

LRHRE, €A
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And so,
(0eeg)l=a0g 'vlcA

Now in the quotient B = (E(i1) ® A)/S, we have

lopeaes) = logog ol
gl lelelel
= 1®11®1,
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and the Baer product [Eo] * [E; '] is the trivial element

g—1 g—1

o 7 gk

R—>E(i1)L>R[ }LE(@)—W,

with gb = gf =
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Proposition 6.

The Baer product [E] * [E; ] is a generically trivial extension, that
is, [E] * [Ey Y] € Eat(E(i2), E(i)), thus

[E]+[E5 '] = [E,].

for some € K.

Proof.
Use the formula

Ko ([Ed+[E]) = [K® B« [K® E]
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Proposition 7.
The extension E appears as
(1]

j -1 -1 s .
R — E(ih) 5 R [gl —— B8 ] 55 E(h) — R,
Y T

for some € K with v(p(p) > i — pi, g5 = g1, gf = 1.

Proof.
Assuming Proposition 6, we have

([E] = [Eg 1)  [Eo] = [E,] * [Eo],
for some 1 € K. Thus

[E] = [Ep] * [Eo].
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And the Baer product [E,] * [Eo] can be computed as

. -1 (1] -1
R — E(i) %+ R [g17T,_1 AL ] 5 E(i2) — R,
gy = g1, & =1, which is the extension E. U
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6. Hopf orders in K[C. x G, K[C, x Cp], K[Cp]

Let E(i, i2, ;1) be an R-Hopf order in K[Cg] and let E(i3) be an
R-Hopf order in K[Cp].

U (2022) has classified the generically trivial extensions

éét(E(@),E(ﬁ,b,M))

Proposition 8.
The group Eg:(E(i3), E(i1, i2, 1)) is isomorphic to the additive
subgroup of

K2/(FP(M7 1)+ (Fp + mi3_i1) X mi3_i2)
represented by pairs (o, B) € K? which satisfy
v(p(a) + p(p)B) = iz — pir and v(p(B3)) > iz — piz.
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An element in Eg(E(i3), E(i1, I, 1)) appears as

g1 e —1 gsgl[a](gzg_ll“ hsl

-1

EAH5 c R— E;(hJ b,/i) — R

ah i ’ '3

— E(i3) = R.
The middle term is an R-Hopf order in K[CS’]. Here,
Cl=(g1,8.8) 8 =85 =85 =1.

Our plan is to use the Baer product to compute extensions whose
middle terms are Hopf orders in K[C2 x Cp], K[Cp x Cp2], or
K[Cp].
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For instance, if gf = gy = 1,85 = &, then (g1, 82, 83) = C, x Cpp.

And if
& —1

7I'pi3 S E(ilai27#)’

then there exists a distinguished extension

(1]
. g1—1 ggy —1 g3—1
EO: R—>E(’17I27N)—>R 7Ti1 ’ ]';T’.2 ’ 7Ti3
—)E(i3)—>R.

Consequently, the Baer product [E, g] * [Eo] is an element of
E(E(i3), E(i,i2, 1)), and its middle term is an R-Hopf order in
K[Cp X sz].
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